>     공지사항     >     학회공지

제목 Multicore Parallel Programming 및 Performance Optimization 교육
날짜 2013-01-23 02:24:32
내용

안녕하세요.
한국차세대컴퓨팅학회 주최로 Multicore Parallel Programming 및 Performance Optimization 교육이 실기되기에 회원님들께 알려드리고자 합니다.
자세한 사항은 아래의 내용을 참조해 주시기 바랍니다.


◇ 기   간 : 2013.1.30(수)-2013.2.1(금)

◇ 장   소 : 한국과학기술정보연구원(KISTI)

◇ 주   최 : 한국차세대컴퓨팅학회

◇ 강   사 : 명지대학교 이명호교수

◇ 참가비 : 900,000(3일 교육, 강의자료)                  - 무통장입금처 : 우리은행 1005-201-651807 (사)한국차세대컴퓨팅학회

◇ 참가 문의 : 이명호교수(명지대학교, myunghol@mju.ac.kr, 031-330-6783)

                                                                                           강의 내용 

 

  1. Multicore Processor Architecture 및 HPC Architecture Overview


  2.  
  • Multicore Processor Architecture

  • Multicore processor architecture

  • Manycore GPU Architecture


  •  


l  Parallel Architecture

–       Parallel Architecture Overview

  • Shared-Memory Multiprocessor

  • Message-Passing Multicomputer


  •  


–       Cache Coherence

  • Snooping-based coherence

  • Directory-based coherence


  •  


–       Interconnection Network

  • Topology

  • Routing and Control Flow


  •  

 

  1. Parallel Programming Overview Parallel Computing Models


  2.  
  • Theoretical Parallel Models

  • Parallel Algorithm Design


  •  


l  Data Dependence Analysis

–       Basics of Data Dependence Analysis

l  Parallel Programming Models

–       Threaded, Shared-Memory Parallel Programming Model

–       Distributed Memory Message-Passing Parallel Programming Model

–       Partitioned Global Address Space Parallel Programming Model

–       Heterogeneous Parallel Programming Model

 

  1. OpenMP Tutorial with Performance Optimizations


  2.  


l  OpenMP Directives and Clauses

–       OpenMP를 활용한 병렬화를 위한 directive들 소개

–       각 directive들에 대한 예제 실습

l  OpenMP Run Time Library Routines

–       OpenMP run time library routine들 소개

–       예제 실습

l  Environment Variables

–       OpenMP environment variable들 소개

–       예제 실습

l  Putting Things Together: Example Parallel Programs Using OpenMP

–       학습한 내용들을 활용하여 간단한 Parallel Program 작성 실습

–       Performance optimization technique들을 함께 적용하여 실습

 

  1. CUDA Tutorial 


  2.  


l  Introduction to CUDA

–       Overview

–       Parallel processing using CUDA

l  Hardware Execution Model

–       SIMD execution

–       Multithreading

  • Memory Hierarchy optimization


  •  


–       Locality and data placement

–       Bandwidth optimization

  • Issues with Parallelization


  •  


–       Data races

–       Synchronization

  • Control Flow


  •  


–       Branch Handling

–       Predicated execution

  • Floating-point issues

  • Performance optimization


  •  


–       Instruction throughput optimization

–       Memory optimizations

–       Latency hiding techniques

 

  1. OpenACC Overview


  2.  


l  OpenACC introduction: High-level GPGPU Programming API

l  OpenACC APIs

l  Performance issues